教学目标
1、理解并掌握长方体和正方体体积的计算方法.
2、能运用长、正方体的体积计算解决一些简单的实际问题.
3、培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:长、正方体,1立方厘米的立方体24块,1立方分米的立方体1块,
学具:1立方厘米的立方体20块.
教学设计
一、复习准备
1、提问:什么是体积?
2、请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课
(一)长方体的体积
1、拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高.
2、学生汇报,教师板书:
长/厘米 宽/厘米 高/厘米 体积/厘米3
4 3 1 12
3 2 2 12
12 1 1 12
6 2 1 12
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3、第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
长/厘米 宽/厘米 高/厘米 体积/立方厘米
4 3 2 24
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
长/厘米 宽/厘米 高/厘米 体积/立方厘米
3 3 2 18
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
长/厘米 宽/厘米 高/厘米 体积/立方厘米
5 4 3 60
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4、自学例1、
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积
1、教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2、练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3、归纳正方体体积公式
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4、独立解答例2
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法相同还是不相同
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈
1、口答填表
2、判断正误并说明理由.
四、课堂总结
今天这节课我们学习了新知识?谁来说一说?
五、课后作业
1、一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2、一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
[小六上]长方体和正方体的体积(苏教版)
文章来源:作者:不详时间:2008-08-08
相关栏目
热门文章