1.认识真分数和假分数,掌握它们的特征.
2.学会把分子是分母倍数的分数化成整数.
教学重点
理解真分数、假分数的概念和特征.
教学难点
理解假分数的两种实际意义.
教学步骤
一、铺垫孕伏.
1. 表示的意义是什么?
2.说出 的分数单位及有几个这样的分数单位.
二、探究新知.
我们理解了分数的意义,知道了分数也有大小之分,今天我们继续学习有关分数的知识.
(板书:真分数和假分数)
(一)教学例1:用分数表示每个图形的阴影部分.
1.学生分组讨论:这三个分数有什么特点?
(板书:这三个分数的分子比分母小,这三个分数比“1”小)
2.教师明确:我们把这样的分数就叫做真分数.
3.交流总结:分子比分母小的分数叫真分数,真分数小于1.
4.学生举例:说出几个真分数.
(二)教学例2:用分数表示每个图形的阴影部分.
1.教师提问:这三个数也是分数,观察这些分数的分子与分母你发现了什么?
(板书:分子比分母大或分子和分母相等)
教师明确:分子比分母大或分子和分母相等的分数叫假分数,假分数等于1或大于1.
2.学生举例:说出几个假分数.
(三)反馈练习.
1.下面的分数哪些是真分数,哪些是假分数?
2.归纳总结:分数可分为哪两类?是根据什么划分的?
(四)教学例3.
1.导语 :有些假分数的分子恰好是分母的倍数,请同学们从例2的三个分数中找出分子是分母倍数的假分数.
2.出示例3:把 化成整数.
(1)根据分数的意义, 是3个 ,正好是一个圆,所以 ;
根据分数与除法的关系, =3÷3=1,所以 化成整数是1.
(2)根据分数的意义, 是8个 ,正好是两个圆,所以 =2;
根据分数与除法的关系, =8÷4=2,所以 =2
3、练习:把下面的假分数化成整数并说说是怎样化的.
三、课堂小结.
通过这节课的学习你懂得了什么?
四、随堂练习.
1.分数可分为哪几类?是怎样划分的?
2.读下面的分数,判断哪些是真分数,哪些是假分数.
3.用真分数或假分数表示图中阴影部分.
4.指出下表中哪些是真分数,哪些是假分数.再指出哪些假分数小于1,哪些假分数大于1.
思考:分母是2、3、4、5的真分数分别有几个?真分数的个数与它的分母有什
么关系?分母是6的真分数有几个?分母是10的呢?
五、布置作业 .
把下面的假分数化成真分数.
六、板书设计 .
真分数和假分数 | ||
例1.观察下面每个图形所表示的分数,比较每个分数中分子和分母的大小. 分子比分母小的分数叫做真分数.真分数小于1. | 例2.观察下面每组图形所表示的分数,比较每个分数中分子和分母的大小. 分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1. | 例3.把 化成整数 |