一、素质教育目标
(一)知识教学点:
1.熟练地运用公式法解一元二次方程,掌握近似值的求法.
2.能用公式解关于字母系数的一元二次方程.
(二)能力训练点:培养学生快速准确的计算能力.
(三)德育渗透点:
1.向学生渗透由一般到特殊,再由特殊到一般的认识问题和解决问题的方法.
2.渗透分类的思想.
二、教学重点、难点、疑点及解决方法
1.教学重点:用公式法解一元二次方程.
2.教学难点:在解关于字母系数的一元二次方程中注意判断b2-4ac的正负.
3.教学疑点:对于首项系数含有字母的方程的解要注意分类讨论.
三、教学步骤
(一)明确目标
公式法是解一元二次方程的通法,利用公式法不仅可以求得方程中x的准确值,也可以求得近似值,不仅可以解关于数字系数的一元二次方程,还可以求解关于字母系数的一元二次方程.
(二)整体感知
这节内容是上节内容的继续,继续利用一元二次方程的求根公式求一元二次方程的解.但在原来的基础上有所深化,会进行近似值的计算,对字母系数的一元二次方程如何用公式法求解.由此向学生渗透由一般到特殊,再由特殊到一般的认识问题和解决问题的方法,通过字母系数一元二次方程的求解,渗透分类的思想,为方程根的存在情况的讨论等打下坚实的基础.
(三)重点,难点的学习与目标完成过程
1.复习提问
(1)写出一元二次方程的一般形式及求根公式.
一般式:ax2+bx+c=0(a≠0).
(2)说出下列方程中的a、b、c的值.
①x2-6=9x;
②3x2+4x=7;
③x2=10x-24;
通过以上练习,为本节课顺利完成任务奠定基础.
2.例1 解方程x2+x-1=0(精确到0.01).
解:∵ a=1,b=1,c=-1,
对于近似值的求法,一是注意要求,要求中有精确0.01,有保留三位有效数字,有精确到小数点第三位.二是在运算过程中精确的位数要比要求的多一位.三是注意有近似值要求就按要求求近似值,无近似值要求求准确值.练习:用公式法解方程x2+3x-5=0(精确到0.01)
学生板演、评价、练习.深刻体会求近拟值的方法和步骤.例2 解关于x的方程x2-m(3x-2m+n)-n2=0.
分析:解关于字母系数的方程时,一定要把字母看成已知数.解:展开,整理,得
x2-3mx+2m2-nm-n2=0.
∵ a=1,b=-3m,c=2m2-mn-n2,
又∵ b2-4ac=(-3m)2-4×1×(2m2-mn-n2),
=(m+2n)2≥0
∴ x1=2m+n,x2=m-n.
分析过程,b2-4ac=(m+2n)2≥0,此式中的m,n取任何实
详细变化过程是:
[初三下]用公式解一元二次方程(五)(人教新课标)
文章来源:作者:不详时间:2008-08-08
相关栏目
热门文章