1.使学生初步理解“方程”“方程的解”和“解方程”的含义.
2.初步掌握解简易方程的方法并会检验.
教学重点
使学生初步掌握解方程的方法和书写格式.
教学难点
帮助学生建立“方程”的概念,并会应用.
教学设计
一、复习准备
(一)口算下面各题.
30+( )=50 ( )×2=10
(二)列式.
1.一支钢笔 元,2支钢笔多少元?
2. 与4的和.
二、新授教学
(一)方程的意义
1.介绍天平
这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.
2.引出方程
(1)出示图片:天平1
教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?
(2)出示图片:天平2
教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?
教师板书:20+?=100
教师说明:这个未知数“?”,如果用 来表示就可以写成20+ =100.
(3)出示图片:篮球
教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?
教师板书:
3.方程的意义.
教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?
相同点:都是相等的式子.
不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.
教师板书:象这种含有未知数的等式,叫方程.
教师强调:含有未知数、等式
4.思考:方程和等式之间到底是什么关系呢?
(1)出示图片:等式与方程
(2)小结:所有的方程都是等式,但是等式不一定都是方程.
(二)教学例1
1.方程的解
教师提问:在 中, 等于多少时方程左边和右边相等?
在 中, 等于多少时方程的左边和右边相等?
教师说明:使方程左右两边相等的未知数的值,叫做方程的解.
如: 是方程 的解
是方程 的解
2.解方程
教师板书:求方程的解的过程叫做解方程.
3.教学例1
例1.解方程 -8=16
(1)教师提问:解方程先写什么?根据什么计算?
(2)教师板书:
解:根据被减数等于减数加差
(3)怎样检查解方程是否正确?
检验:把 代入原方程,
左边 ,右边
左边=右边
所以 是原方程的解.
4.讨论:“方程的解”和“解方程”有什么区别?
三、课堂小结
今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?
四、巩固练习
(一)填空
1.含有未知数的( )叫做方程.
2.使方程左右两边相等的( ),叫做方程的解.
3.求方程的解的( )叫解方程.
4.下面的式了中是等式的有( );
是方程的有( ).