《生活中的平移》
学习目标:
1. 经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识;
2. 通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。
学习重点:平移的基本内涵与基本性质。
学习难点:平移特征的探索及理解。
教学过程设计:
一、创设问题情境:
1、回忆游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯……
(引出第三章内容:图形的平移与旋转,并进行初步分类,引出本节课研究内容:生活中的平移。)
2、观察图片中传送带上的电视机与手扶电梯上的人,回答以下问题:
(1)传送带上每台电视机做什么运动?手扶电梯上的人呢?
(2)传送带上的电视机的形状、大小在运动前后是否发生了改变?手扶电梯上的人呢?
(3)在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其他部位向什么方向移动?移动了多少距离?
(4)如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(课件演示),那么四边形ABCD与四边形EFGH的形状、大小是否相同?
二、探索过程:
(一)、平移的概念:
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。
举一些生活中平移的实例。
(二)、探索平移的基本性质:
1、想一想:(课件演示)
(1)在上图中,线段AE,BF,CG,DH有怎样的位置关系?
(2)图中每对对应线段之间有怎样的位置关系?
(3)图中有哪些相等的线段、相等的角?
2、归纳平移的基本性质:
经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
3、做一做:(课件演示)
(1)如图所示,△ABE沿射线XY的方向
平移一定距离后成为△CDF.找出图中存在
的平行且相等的三条线段和一组全等三角形.
(2)图中的四个小三角形都是等边三角形,
边长为2cm,能通过平移△ABC得到其它
三角形吗?若能,请画出平移的方向,并
说出平移的距离.
三、随堂练习:(投影)
填空:
(1)将线段AB向右平移3cm得到线段CD,如果AB=5 cm,则CD=_____cm.
(2)将∠ABC向上平移10cm得到∠EFG,如果∠ABC=52°,则∠EFG=_____°,BF=_____cm.
(3)将面积为30cm2的等腰直角三角形ABC向下平移20cm,得到△MNP,则△MNP是_____三角形,它的面积是_____cm2.
图中小船经过平移到了新的位置,你发现少了什么?请补上.
四、知识拓展:(课件演示)
如图1,在四边形ABCD中,AD∥BC,AB=CD,AD<BC,要探究∠B与∠C的关系,可以采用平移的方法(如图2、3)。请你分别说明图形的形成过程,同时判断∠B与∠C的关系并叙述理由,你还有其他方法吗?请在图1中画出你的方案。
五、反思:
回顾本节课的活动过程:观察——分析——探索——概括。
本节课学到了哪些知识和方法?
六、图案欣赏:(投影)
七、作业:课本习题3.1中的第1、2、3题.